

การทดลองที่ 6 CE TRANSISTOR AMPLIFIER

Common Emitter Transistor Amplifier

MODEL GRAPH:

AIM: To Find the frequency response of a Common Emitter Transistor Amplifier and to find the Bandwidth from the Response, Voltage gain, Input Resistance, output resistance.

APPARATUS:

No.	Name	Range / Value	Quantity
1	Dual Regulated D.C Power supply	0-30V	1
2	Transistor	BC107	1
3	Resistor	1K 4.7K 10K 100K	1
4	Capacitors	10uF	3
5	Potentiometer	10K	1
6	Signal Generator (0 – 1MHz)	0-1MHz	1
7	Bread Board and connecting wires		1
8	Dual Trace DOSC	20MHz	1

PRECAUTIONS:

- 1. Check the wires for continuity before use.
- 2. Keep the power supply at Zero volts before Start
- 3. All the contacts must be intact

PROCEDURE:

- 1. Connect the circuit as the Fig.1., Apply Vcc of 12 Volts DC.
- 2. Apply I/P Voltage of $20 \text{mV}_{\text{rms}}$ at 1KHz from the Signal Generator and observe the O/P on DOSC.
- 3. Vary the frequency from 50 Hz to 1MHz in appropriate steps and note down the corresponding O/P Voltage Vo in a tabular form.
- 4. Calculate the Voltage Gain Av = Vo/Vs and note down in the tabular form.
- 5. Plot the frequency (f) Vs Gain (Av) on a Semi-Log Graph sheet
- 6. Draw a horizontal line at 0.707 times Av and note down the cut off points and the Bandwidth is given by $B.W = f_2 f_1$.

INPUT RESISTANCE RI:

- 1. Apply I/P Voltage of 20mV at 1KHz from the Signal Generator and observe voltage Vi across R2 on DOSC.
- 2. Without Disturbing the setup note Vi.
- 3. find Ii = (Vs Vi) / Rs and Ri = Vi / Ii Ohms.

OUTPUT RESISTANCE (Ro):

- 1. Apply I/P Voltage of 50 mV at 1KHz from the Signal Generator and observe the o/p on DOSC
- 2. Connect a Potentiometer across the O/P terminals and without disturbing Vs adjust the potentiometer such that o/p falls to $V_0/2$
- 3. The Resistance of the potentiometer is equal to Ro.

RESULT:

BandWidth	B.W	$= f_2 - f_1 = Hz$
Voltage Gain	Av	=
Input Resistance	Ri	=ohms
Output Resistance	Ro	=ohms

TABULAR FORMS:

S.No	Frequency	O/P Voltage,	Voltage Gain	Av in dB
	(Hz)	Vo (Vrms)	Av =Vo/Vi	$= 20 \log (Av)$
1	100			
2	200			
3	300			
4	500			
5	700			
6	1K			
7	3K			
8	5K			
9	7K			
10	10K			
11	30K			
12	50K			
13	70K			
14	100K			
15	300K			
16	500K			
17	700K			
18	1M			

VIVA QUESTIONS:

- 1. What is an Amplifier?
- 2. How many types of an Amplifiers?
- 3. What is meant Band width, Lower cut-off and Upper cut-off frequency?
- 4. How much phase shift for CE Amplifier?
- 5. What are the applications?