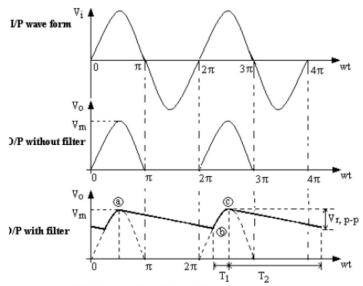

การทดลองที่ 4 RECTIFIERS


4.1 HALF-WAVE RECTIFIERS WITHOUT CAPACITOR FILTER AND WITH CAPACITOR FILTER:

Half-wave Rectifier without filter

Half-wave Rectifier with capacitor filter

Half-wave Rectifier with capacitor filter wave form

WITHOUT FILTER:

- 1. Connecting the circuit on bread board as per the circuit diagram
- 2. Connect the primary of the transformer to main supply i.e. 230V, 50Hz
- 3. Connect the decade resistance box and set the $R_{\textrm{L}}$ value to 100Ω
- 4. Connect the Multimeter at output terminals and vary the load resistance (DRB)

from 100Ω to $1K\Omega$ and note down the Vac and Vdc as per given tabular form

- 5. Disconnect load resistance (DRB) and note down no load voltage Vdc (V no load)
- 6. Connect load resistance at $1K\Omega$ and connect Channel II of Oscilloscope at output terminals and CH I of OSCILLOSCOPE at Secondary Input terminals observe and note down the Input and Output Wave form on Graph Sheet.
- 7. Calculate ripple factor

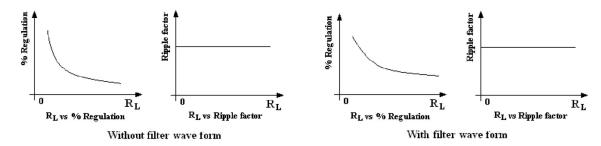
$$\gamma = \frac{V_{ac}}{V_{dc}}$$

8. Calculate Percentage of Regulation,

$$\% \eta = \frac{V_{\text{no load}} - V_{\text{full load}}}{V_{\text{no load}}} * 100\%$$

V no load =	_ V _{ac}	V_{dc}
-------------	-------------------	----------

S.	RL	O/P Voltage (V _o)	Ripple factor	% of Regulation
No.	(Ω)	$V_{ac}(V) V_{dc}(V)$		
1	100			
2	200			
3	300			
4	400			
5	500			
6	600			
7	700			
8	800			
9	900			
10	1K			


WITH CAPACITOR FILTER:

1. Connecting the circuit as per the circuit Diagram and repeat the above procedure from steps $2\ to\ 8$.

$$V$$
 no load = _____ V_{ac} _____ V_{dc}

S.	RL	O/P Voltage (V _o)	Ripple factor	% of Regulation
No.	(Ω)	$V_{ac}(V) V_{dc}(V)$		
1	100			
2	200			
3	300			
4	400			
5	500			
6	600			
7	700			
8	800			
9	900			
10	1K			

MODEL GRAPHS:

RESULT: Observe Input and Output Wave forms and Calculate ripple factor and percentage of regulation in Half wave rectifier with and without filter.

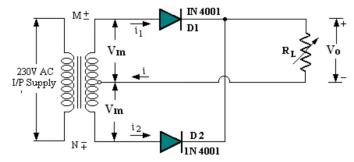
Drawn Input and Output Wave forms

Without Filter:

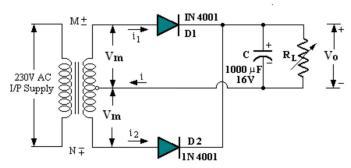
Ripple Factor:

Regulation:

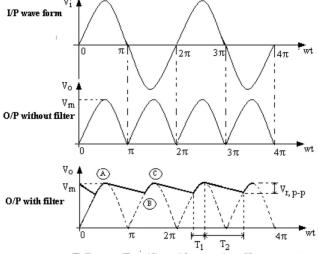
With Capacitor Filter:


Ripple Factor:

Regulation:


PRECAUTIONS:

- 1. Check the wires for continuity before use.
- 2. Keep the power supply at Zero volts before Start.
- 3. All the contacts must be intact.


4.2 FULL-WAVE RECTIFIERS

Full-wave Rectifier without filter

Full-wave Rectifier with capacitor filter

Full-wave Rectifier with capacitor filter wave form

WITHOUT FILTER:

 $V \ no \ load = ___V_{ac} \ ___V_{dc}$

S.	RL	O/P Voltage (V _o)	Ripple factor	% of Regulation
No.	(Ω)	$V_{ac}(V) V_{dc}(V)$		
1	100			
2	200			
3	300			
4	400			
5	500			
6	600			
7	700			
8	800			
9	900			
10	1K			

WITH CAPACITOR FILTER: $V \text{ no load} = \underline{\hspace{1cm}} V_{ac} \underline{\hspace{1cm}} V_{dc}$

S.	RL	O/P Voltage (V _o)	Ripple factor	% of Regulation
No.	(Ω)	$V_{ac}(V) V_{dc}(V)$		
1	100			
2	200			
3	300			
4	400			
5	500			
6	600			
7	700			
8	800			
9	900			
10	1K			

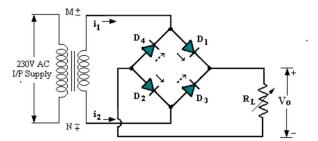
RESULT: Observe Input and Output Wave forms and Calculate ripple factor and percentage of regulation in Half wave rectifier with and without filter.

Without Filter:

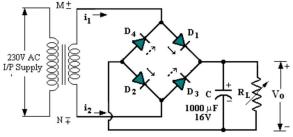
Ripple Factor:

Regulation:

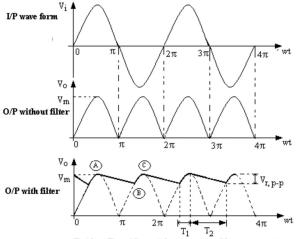
With Capacitor Filter:


Ripple Factor:

Regulation:


VIVA QUESTIONS:

- 1. What is a rectifier?
- 2. How Diode acts as a rectifier?
- 3. What is the significance of PIV? What is the condition imposed on PIV?
- 4. Draw the o/p wave form without filter?
- 5. Draw the o/p wave form with filter?
- 6. What is meant by ripple factor? For a good filter whether ripple factor should be high or low?
- 7. What is meant by regulation?
- 6. What is meant by time constant?
- 8. What happens to the o/p wave form if we increase the capacitor value?
- 9. What happens if we decrease the capacitor value?


4.3 BRIDGE RECTIFIER

Bridge Rectifier without filter

Bridge Rectifier with capacitor filter

Bridge Rectifier with capacitor filter wave form

WITHOUT FILTER:

 $V \text{ no load} = \underline{\hspace{1cm}} V_{ac} \underline{\hspace{1cm}} V_{dc}$

S.	RL	O/P Voltage (V _o)	Ripple factor	% of Regulation
No.	(Ω)	$V_{ac}(V) V_{dc}(V)$		
1	100			
2	200			
3	300			
4	400			
5	500			
6	600			
7	700			
8	800			
9	900			
10	1K			

WITH CAPACITOR FILTER: V no load = V_{ac} V_{dc}

S.	RL	O/P Voltage (Vo)	Ripple factor	% of Regulation
No.	(Ω)	$V_{ac}(V) V_{dc}(V)$		
1	100			
2	200			
3	300			
4	400			
5	500			
6	600			
7	700			
8	800			
9	900			
10	1K			

RESULT: Observe Input and Output Wave forms and Calculate ripple factor and percentage of regulation in Full-wave Bridge rectifier with and without filter.
Without Filter: Ripple Factor: Regulation:
With Capacitor Filter: Ripple Factor: Regulation: VIVA QUESTIONS: 1. What are the advantages of Bridge Rectifier over the center tapped Rectifier? 2. What does Regulation indicate? 3. What is the Theoretical maximum value of Ripple factor of a Full-wave Rectifier? 4. What is the PIV requirement of a Diode in a Bridge Rectifier? 5. Explain the operation of Bridge Rectifier? SUMARY