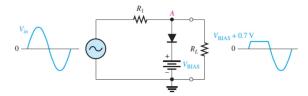
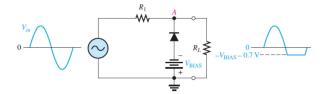
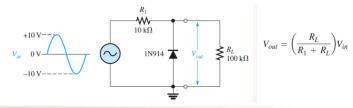

DIODE LIMITERS AND CLAMPERS





$$V_{out} = \left(\frac{R_L}{R_1 + R_L}\right) V_{in}$$

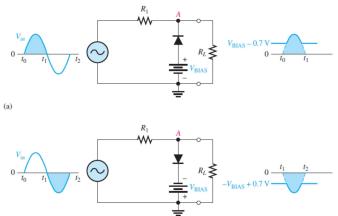
DIODE **L**IMITERS AND **C**LAMPERS


Biased Limiters

DIODE LIMITERS AND CLAMPERS

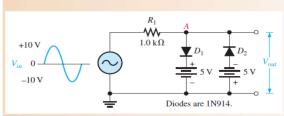
Diode Limiters

The diode is forward-biased and conducts when the input voltage goes below -0.7 V. So, for the negative limiter, determine the peak output voltage across R_L by the following equation:


$$V_{p(out)} = \left(\frac{R_L}{R_1 + R_L}\right) V_{p(in)} = \left(\frac{100 \text{ k}\Omega}{110 \text{ k}\Omega}\right) 10 \text{ V} = 9.09 \text{ V}$$

The scope will display an output waveform as shown in Figure 2–54.

DIODE LIMITERS AND CLAMPERS


Biased Limiters

DIODE LIMITERS AND CLAMPERS

Biased Limiters

Figure 2–58 shows a circuit combining a positive limiter with a negative limiter. Determine the output voltage waveform.

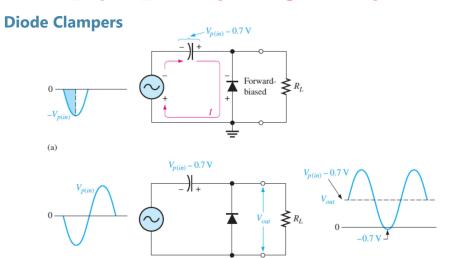
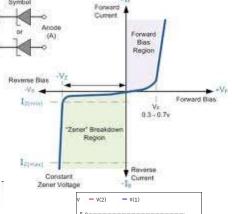
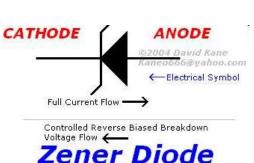
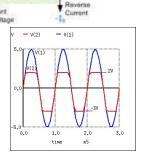

When the voltage at point A reaches +5.7 V, diode D_1 conducts and limits the waveform to +5.7 V. Diode D_2 does not conduct until the voltage reaches -5.7 V. Therefore, positive voltages above +5.7 V and negative voltages below -5.7 V are clipped off. The resulting output voltage waveform is shown in Figure 2–59.

FIGURE 2-59

Output voltage waveform for Figure 2–58.

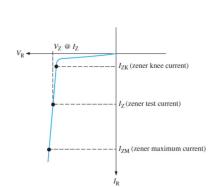

DIODE LIMITERS AND CLAMPERS

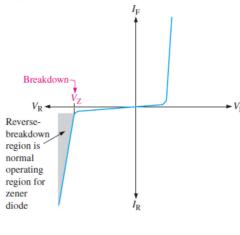



Special-Purpose Diodes

THE ZENER DIODE

WORK AT SPECIFIC BREAKDOWN VOLTAGE. FUCTION AS A VOLTAGE SENSITIVE SWITCH. THIS VOLTAGE (Vz) VARY FROM 2 TO 200 VOLTS

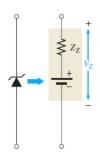


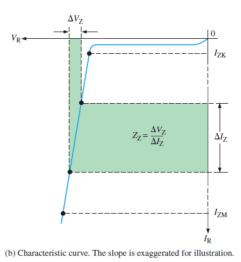

Special-Purpose Diodes

THE ZENER DIODE

► FIGURE 3–3

Reverse characteristic of a zener dlode. V_Z is usually specified at a value of the zener current known as the test current.




THE ZENER DIODE

zener impedance (resistance), Z_Z

$$Z_{\rm Z} = \frac{\Delta V_{\rm Z}}{\Delta I_{\rm Z}}$$

Special-Purpose Diodes

THE ZENER DIODE

zener impedance (resistance), Z_Z

$$Z_{\rm Z} = \frac{\Delta V_{\rm Z}}{\Delta I_{\rm Z}}$$

$$\Delta V_{\rm Z} = V_{\rm Z} \times TC \times \Delta T$$

$$P_{\rm D} = V_{\rm Z}I_{\rm Z}$$

$$P_{\text{D(derated)}} = P_{\text{D(max)}} - (\text{mW/°C})\Delta T$$

A certain zener diode has a maximum power rating of 400 mW at 50°C and a derating factor of 3.2 mW/°C. Determine the maximum power the zener can dissipate at a temperature of 90°C.

$$P_{\text{D(derated)}} = P_{\text{D(max)}} - (\text{mW/°C})\Delta T$$

= 400 mW - (3.2 mW/°C)(90°C - 50°C)
= 400 mW - 128 mW = 272 mW

A certain 50 W zener diode must be derated with a derating factor of 0.5 W/°C above 75°C. Determine the maximum power it can dissipate at 160°C.

Special-Purpose Diodes

THE ZENER DIODE

$$\Delta V_{\rm Z} = V_{\rm Z} \times TC \times \Delta T$$

zener impedance (resistance), ZZ

$$Z_{\rm Z} = \frac{\Delta V_{\rm Z}}{\Delta I_{\rm Z}}$$

An 8.2 V zener diode (8.2 V at 25°C) has a positive temperature coefficient of 0.05%/°C. What is the zener voltage at 60°C?

The change in zener voltage is

$$\Delta V_{\rm Z} = V_{\rm Z} \times TC \times \Delta T = (8.2 \text{ V})(0.05\% \text{°C})(60\text{°C} - 25\text{°C})$$
$$= (8.2 \text{ V})(0.0005 \text{°C})(35\text{°C}) = 144 \text{ mV}$$

Notice that 0.05%/°C was converted to 0.0005/°C. The zener voltage at 60°C is

$$V_Z + \Delta V_Z = 8.2 \text{ V} + 144 \text{ mV} = 8.34 \text{ V}$$

Special-Purpose Diodes

THE ZENER DIODE

1N4728A - 1N4764A

Zeners

Absolute Maximum Ratings * T_ = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
PD	Power Dissipation @ TL ≈ 50°C, Lead Length = 3/8*	1.0	W
	Derate above 50°C	6.67	mW/°C
T _J , T _{STG}	Operating and Storage Temperature Range	-65 to +200	°C

^{*}These ratings are limiting values above which the serviceability of the diode may be impaired.

THE ZENER DIODE

Electrical Characteristics T_a = 25°C unless otherwise noted

Device	V _Z (V) @ I _Z (Note 1)			Test Current	Max. Z	ener Impe	Leakage Current		
	Min.	Тур.	Max.	I _Z (mA)	Z _Z @I _Z (Ω)	Z _{ZK} @ I _{ZK} (Ω)	I _{ZK} (mA)	I _R (μA)	V _R (V)
1N4728A	3.315	3.3	3.465	76	10	400	1	100	1
1N4729A	3.42	3.6	3.78	69	10	400	1	100	1
1N4730A	3.705	3.9	4.095	64	9	400	1	50	1
1N4731A	4.085	4.3	4.515	58	9	400	1	10	1
1N4732A	4.465	4.7	4.935	53	8	500	1	10	1
1N4733A	4.845	5.1	5.355	49	7	550	1	10	1
1N4734A	5.32	5.6	5.88	45	5	600	1	10	2
1N4735A	5.89	6.2	6.51	41	2	700	1	10	3
1N4736A	6.46	6.8	7.14	37	3.5	700	1	10	4
1N4737A	7.125	7.5	7.875	34	4	700	0.5	10	5
1N4738A	7.79	8.2	8.61	31	4.5	700	0.5	10	6
1N4739A	8.645	9.1	9.555	28	5	700	0.5	10	7
1N4740A	9.5	10	10.5	25	7	700	0.25	10	7.6
1N4741A	10.45	11	11.55	23	8	700	0.25	5	8.4
1N4742A	11.4	12	12.6	21	9	700	0.25	5	9.1
1N4743A	12.35	13	13.65	19	10	700	0.25	5	9.9
1N4744A	14.25	15	15.75	17	14	700	0.25	5	11.4
1N4745A	15.2	16	16.8	15.5	16	700	0.25	5	12.2
1N4746A	17.1	18	18.9	14	20	750	0.25	5	13.7
1N4747A	19	20	21	12.5	22	750	0.25	5	15.2

Special-Purpose Diodes

THE ZENER DIODE

For $I_Z = 50$ mA: The 50 mA current is a 13 mA increase above the test current, I_Z , of 37 mA.

$$\Delta I_Z = I_Z - 37 \text{ mA} = 50 \text{ mA} - 37 \text{ mA} = +13 \text{ mA}$$

$$\Delta V_{\rm Z} = \Delta I_{\rm Z} Z_{\rm Z} = (13 \,\text{mA})(3.5 \,\Omega) = +45.5 \,\text{mV}$$

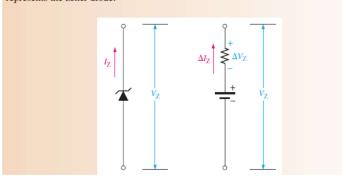
The change in voltage due to the increase in current above the I_Z value causes the zener terminal voltage to increase. The zener voltage for $I_Z = 50$ mA is

$$V_Z = 6.8 \text{ V} + \Delta V_Z = 6.8 \text{ V} + 45.5 \text{ mV} = 6.85 \text{ V}$$

For $I_Z = 25$ mA: The 25 mA current is a 12 mA decrease below the test current, I_Z , of 37 mA.

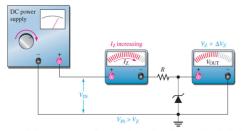
$$\Delta I_{\rm Z} = -12 \, \rm mA$$

$$\Delta V_{\rm Z} = \Delta I_{\rm Z} Z_{\rm Z} = (-12 \,\text{mA})(3.5 \,\Omega) = -42 \,\text{mV}$$

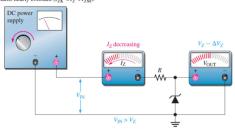

The change in voltage due to the decrease in current below the test current causes the zener terminal voltage to decrease. The zener voltage for $I_Z = 25$ mA is

$$V_Z = 6.8 \text{ V} - \Delta V_Z = 6.8 \text{ V} - 42 \text{ mV} = 6.76 \text{ V}$$

Special-Purpose Diodes


THE ZENER DIODE

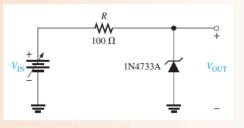
From the datasheet in Figure 3–7, a 1N4736A zener diode has a Z_Z of 3.5 Ω . The datasheet gives $V_Z = 6.8$ V at a test current, I_Z , of 37 mA. What is the voltage across the zener terminals when the current is 50 mA? When the current is 25 mA? Figure 3–8 represents the zener diode.



Special-Purpose Diodes

THE ZENER DIODE Application

(a) As the input voltage increases, the output voltage remains nearly constant ($I_{\rm ZK} < I_{\rm Z} < I_{\rm ZM}$).

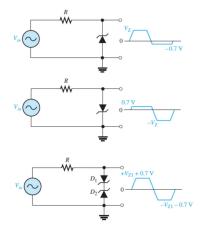


(b) As the input voltage decreases, the output voltage remains nearly constant $(I_{ZK} < I_Z < I_{ZM})$.

THE ZENER DIODE Application

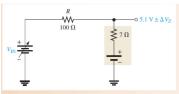
Determine the minimum and the maximum input voltages that can be regulated by the zener diode in Figure 3–11.

► FIGURE 3-11



From the datasheet in Figure 3–7 for the 1N4733A: $V_Z = 5.1$ V at $I_Z = 49$ mA, $I_{ZK} = 1$ mA, and $Z_Z = 7$ Ω at I_Z . For simplicity, assume this value of Z_Z over the range of current values. The equivalent circuit is shown in Figure 3–12.

Special-Purpose Diodes


THE ZENER DIODE Application

Zener Limiter

Special-Purpose Diodes

THE ZENER DIODE Application

At $I_{ZK} = 1$ mA, the output voltage is

$$V_{\text{OUT}} \cong 5.1 \text{ V} - \Delta V_{\text{Z}} = 5.1 \text{ V} - (I_{\text{Z}} - I_{\text{ZK}})Z_{\text{Z}} = 5.1 \text{ V} - (49 \text{ mA} - 1 \text{ mA})(7 \Omega)$$

= 5.1 V - (48 mA)(7 \Omega) = 5.1 V - 0.336 V = 4.76 V

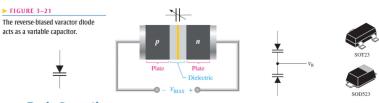
Therefore.

$$V_{\text{IN(min)}} = I_{\text{ZK}}R + V_{\text{OUT}} = (1 \text{ mA})(100 \Omega) + 4.76 \text{ V} = 4.86 \text{ V}$$

To find the maximum input voltage, first calculate the maximum zener current. Assume the temperature is 50°C or below; so from Figure 3–7, the power dissipation is 1 W.

$$I_{\rm ZM} = \frac{P_{\rm D(max)}}{V_{\rm Z}} = \frac{1 \text{ W}}{5.1 \text{ V}} = 196 \text{ m}.$$

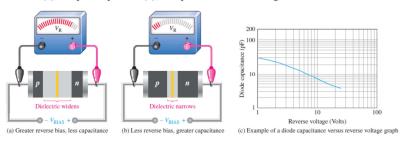
At I_{ZM} , the output voltage is


$$V_{\text{OUT}} \cong 5.1 \text{ V} + \Delta V_Z = 5.1 \text{ V} + (I_{ZM} - I_Z)Z_Z$$

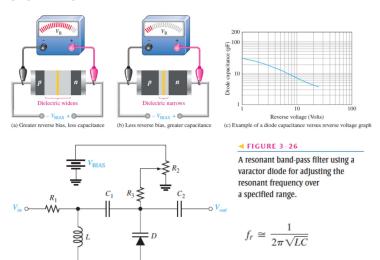
= 5.1 V + (147 mA)(7 \Omega) = 5.1 V + 1.03 V = 6.13 V

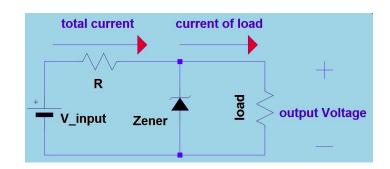
Therefore,

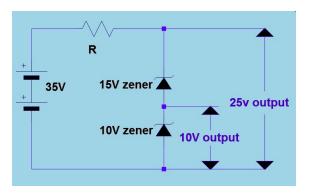
$$V_{\text{IN(max)}} = I_{\text{ZM}}R + V_{\text{OUT}} = (196 \text{ mA})(100 \Omega) + 6.13 \text{ V} = 25.7 \text{ V}$$


Special-Purpose Diodes

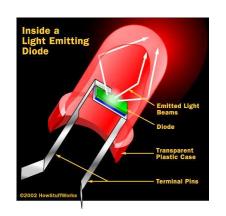
VARACTOR DIODE

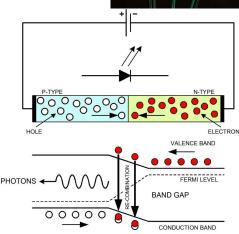


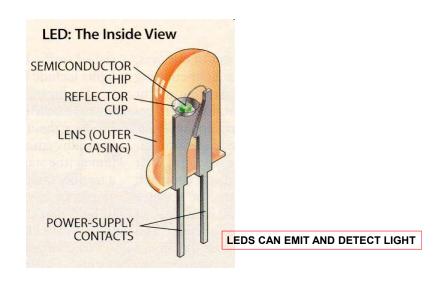

Basic Operation


Recall that capacitance is determined by the parameters of plate area (A), dielectric constant (ϵ) , and plate separation (d), as expressed in the following formula:

VARACTOR DIODE

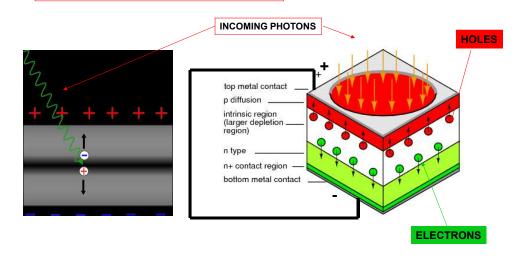




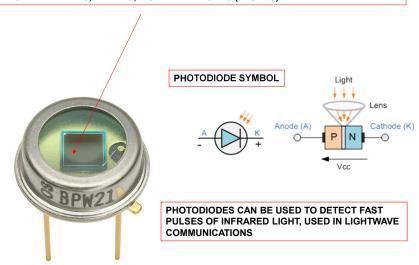

LIGHT EMITTING DIODE (LED)

ALL DIODES EMIT SOME EM RADIATION WHEN FORWARD BIASED. DIODES MADE FROM CERTAIN SEMICODUCTORS EMIT LOTS OF LIGHT. THESE ARE CALLED LEDS

YOU TUBE: MAKE presents: The LED http://www.youtube.com/watch?v=P3PDLsJQcGI

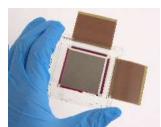

PN JUNCTION LIGHT DETECTORS (PHOTODIODES) PN JUNCTION LIGHT DETECTORS FORM THE LARGEST FAMILY OF PHOTONIC SEMICONDUCTORS. MOST ARE MADE FROM SILICON AND CAN DETECT BOTH VISIBLE LIGHT AND NEAR-INFRARED. WAYELENGTH (NM)

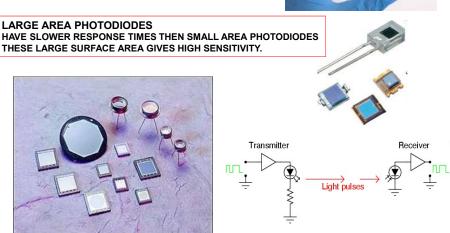
HOW PHOTODIODES WORK


A INCOMING PHOTON WILL CREATE A HOLE ELECTRON PAIR AT THE PN JUNCTION. A CURRENT WILL FLOW IF BOTH SIDES ARE CONNECTED.

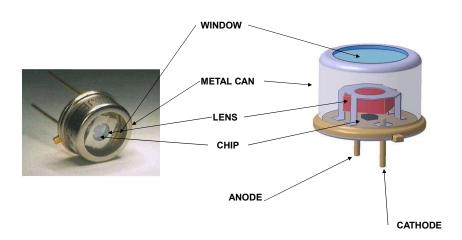
The Photodiode http://www.youtube.com/watch?v=U6Wvmrc3akc

PHOTODIODES


ARE DESIGNED TO DETECT LIGHT. (ALL PN JUNCTIONS ARE LIGHT SENSITIVE) THEY HAVE A WINDOW WHERE LIGHT ENTERS TO A LARGE EXPOSED JUNCTION REGION. SOME COMMON USES INCULDE CAMERAS, ALARMS, LIGHTWAVE DIODES (LASERS).



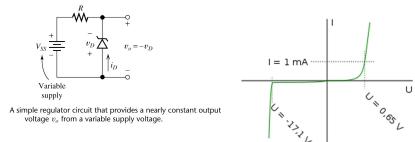
how photodiode works http://www.youtube.com/watch?v=U6Wvmrc3akc


TYPES OF PHOTODIODES

SMALL AREA PHOTODIODES
THESE HAVE VERY FAST RESPONS TIMES

COMPOENTS OF A PHOTODIODE

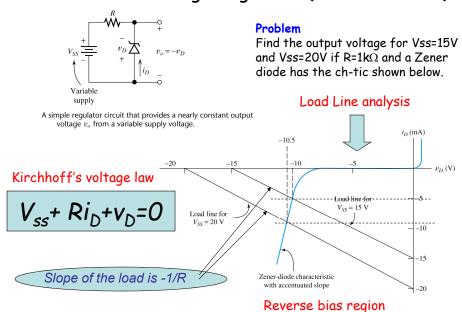
DIFFERENT PACKAGE STYLES FOR PHOTODIODES



CHARGE COUPLED DEVICES (CCD) Microlens Array on Photodiodes Microlens or Lenslet Arrays Lenslet (Microlens) Microlens Aluminum Dye Layer Photodiode p-Type Silicon CCD Photodiode Any CCD Figure 1 Figure 3 4-Pixel Array -Photodiode Parallel CCD/Photodiode Shift Register Parallel Shift Register Clock Control


Parallel

Shift Direction


Zener Diode - Voltage Regulator (reverse biased)

A **Zener diode** is a type of <u>diode</u> that permits <u>current</u> not only in the forward direction like a normal diode, but also in the reverse direction if the voltage is larger than the <u>breakdown voltage</u> known as "Zener knee voltage" or "Zener voltage".

Zener Diode - Voltage Regulator (reverse biased)

Load Line Analysis of Complex Circuits

Thevenin Equivalent

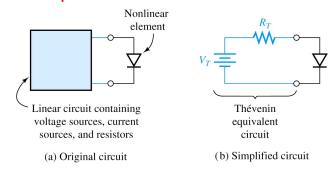


Figure 10.11 Analysis of a circuit containing a single nonlinear element can be accomplished by load-line analysis of a simplified circuit.

EASTERN WASHINGTON UNIVERSITY

Voltage Regulator (1)

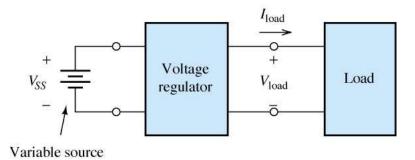


Figure 3.24 A voltage regulator supplies constant voltage to a load.

EASTERN WASHINGTON UNIVERSITY

Voltage Regulator (2)

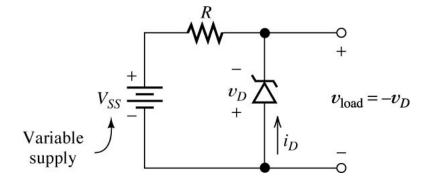
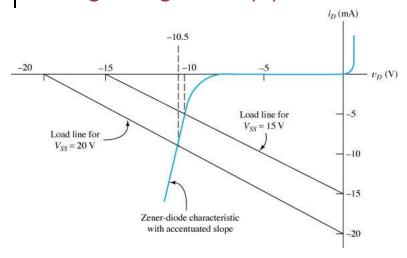



Figure 3.25 A simple regulator circuit that provides a nearly constant output voltage from a variable supply voltage.

Voltage Regulator (3)

EASTERN WASHINGTON UNIVERSITY

Designing a power supply

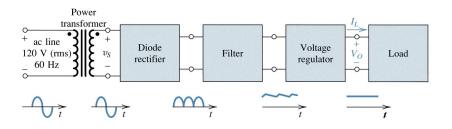
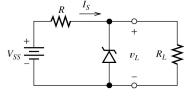
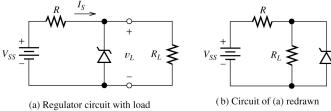



Fig. 3.36 Block diagram of a dc power supply.

38

Problem

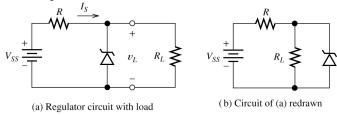
Consider the Zener diode regulator shown in figure (a). Find the load voltage v_L and the source current i_S if Vss=24V, R=1.2k Ω and RL=6k Ω .

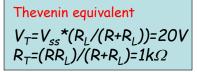


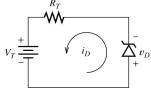
(a) Regulator circuit with load

Problem

37


Consider the Zener diode regulator shown in figure (a). Find the load voltage v_L and the source current i_S if Vss=24V, R=1.2k Ω and RL=6k Ω .




Exercise – find Thevenin equivalent

Problem

Consider the Zener diode regulator shown in figure (a). Find the load voltage v_L and the source current i_S if Vss=24V, R=1.2k Ω and RL=6k Ω .

(c) Circuit with linear portion

Ideal diode Model

Useful for circuits with more than one diode

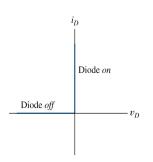


Figure 10.15 Ideal-diode volt–ampere characteristic.

- (1) Assume a state for each diode, either "on" or "off" -2" combinations
- (2) Assume a short circuit for diode "on" and an open circuit for diode "off"
- (3) Check to see if the result is consistent with the assumed state for each diode (current must flow in the forward direction for diode "on" and the voltage across the diodes assumed to be "off" must be positive at the cathode reverse bias)
- (4) If the results are consistent with the assumed states, the analysis is finished. Otherwise return to step (1) and choose a different combination of diode states.

Load line equation

$$V_T + R_T i_D + V_D = 0$$

$$V_L = -V_D = 10V$$

$$i_D = -10mA$$

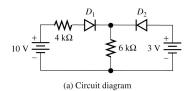
$$-20 -18 -16 -14 -12 -10 -8 -6 -4 -2$$

$$-5$$

$$-10$$

$$-15$$

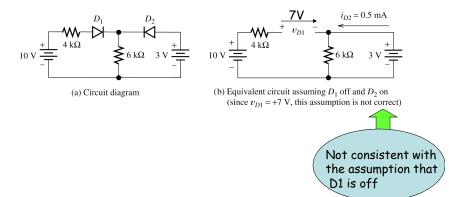
$$-20$$


Figure 10.13 Zener-diode characteristic for Example 10.4 and Exercise 10.4.

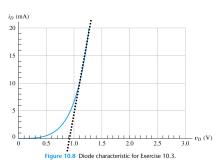
Finally $i_S=(V_{SS}-V_L)/R=11.67$ mA (from circuit "a")

Exercise 10.4 & 10.5

Problem


Analyze the circuit shown below using the ideal diode model. Start by assuming the D1 is off and D2 is on.

Exercise 10.6 & 10.7 & 10.8


Problem

Analyze the circuit shown below using the ideal diode model. Start by assuming the D1 is off and D2 is on.

Piecewise Linear Diode Models

More accurate that the ideal diode model and do not relies on nonlinear equation or graphical techniques.

 $v = R_a i + V_a$

- (1) Diode V-I ch-tic approximated by straight line segments
- (2) We model each section of the diode I-V ch-tic with R in series with a fixed voltage source

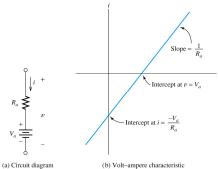
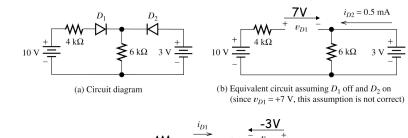
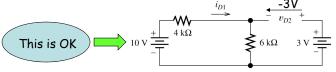




Figure 10.18 Circuit and volt-ampere characteristic for piecewise-linear models.

Problem

Analyze the circuit shown below using the ideal diode model. Start by assuming the D1 is off and D2 is on.

(c) Equivalent circuit assuming D_1 on and D_2 off (this is the correct assumption since i_{D1} turns out to be a positive value and v_{D2} turns out negative)

Problem

Find circuit models for the Zener-diode volt-ampere ch-tic shown in figure below using the piecewise-linear diode model.

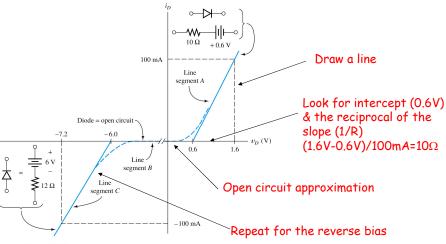


Figure 10.19 Piecewise-linear models for the diode of Example 10.6.

Exercise 10.7

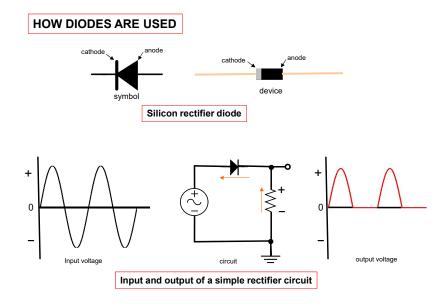
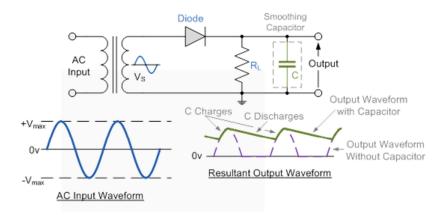
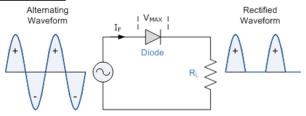
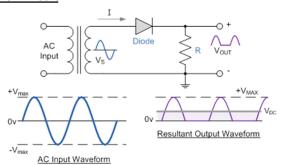
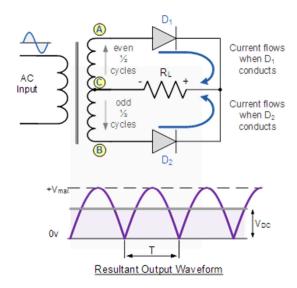
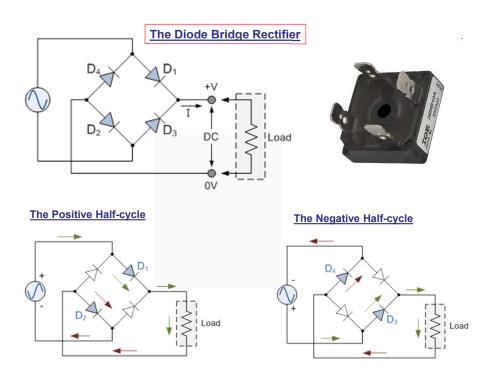




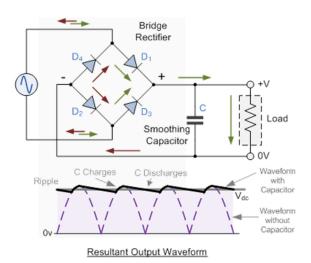
Fig. 8-23 p.219 A single-phase half-wave rectifier circuit produces one output pulse of dc for each cycle of ac input.


Half-wave Rectifier with Smoothing Capacitor

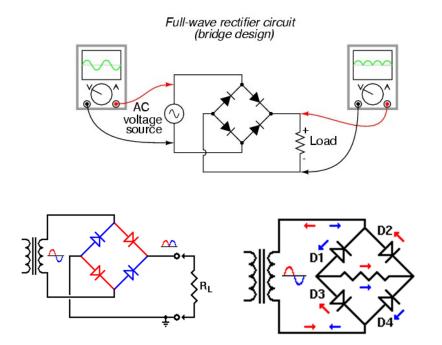

Power Diode Rectifier



Half Wave Rectifier Circuit



Full Wave Rectifier Circuit



Full-wave Rectifier with Smoothing Capacitor

Full Wave Bridge Rectifier

http://www.youtube.com/watch?v=aCfAdIRRw7M

VARIOUS TYPES OF POWER RECTIFIERS

Various printed circuit board mounted rectifiers and voltage regulators

1N4001, 1N4002, 1N4003, 1N4004, 1N4005, 1N4006, 1N4007

Axial Lead Standard Recovery Rectifiers

This data sheet provides information on subminiature size, axial lead mounted rectifiers for general-purpose low-power applications.

- Shipped in plastic bags, 1000 per bag
 Available Tape and Reeled, 5000 per reel, by adding a "RL" suffix to
- the part number
- Available in Fan-Fold Packaging, 3000 per box, by adding a "FF" suffix to the part number

 • Pb-Free Packages are Available

Mechanical Characteristics

- Case: Epoxy, Molded

- Weight: O.4 gram (approximately)
 Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
 Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds, 1/16 in, from case
- · Polarity: Cathode Indicated by Polarity Band

http://onsemi.com

LEAD MOUNTED RECTIFIERS DIFFUSED JUNCTION

MARKING DIAGRAM

datasheet.seek

1N4001 - 1N4007

1.0A RECTIFIER

Features Diffused Junction High Current Capability and Low Forward Voitage Drop Surge Overload Rating to 30A Peak Low Reverse Leakage Current Lead Free Finish, RoHS Compitant (Note 3)

Mechanical Data

Case: DO-41
Case Material: Moided Plastic, UL Flammability Class Rating 34V-0
Moisture Sensitivity: Level 1 per J-STD-020D Terminals: Finish - Bright Tim. Plated Leads Solderal Mill-STD-020, Mellod 208

MIL-STD-202, Method 208 Polarity: Cathode Band Mounting Position: Any Ordering Information: See Page 2 Marking: Type Number Weight: 0.30 grams (approximate)

XNYYY XN

YYY

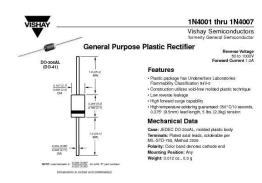
IDENTIFICATION

NUMBER X - NUMBER OF SEMICONDUCTOR JUNCTIONS N - A SEMICONDUCTOR

- YYY IDENTIFICATION NUMBER (ORDER OR REGISTRATION NUMBER)
 ALSO INCLUDES SUFFIX LETTER (IF APPLICABLE) TO INDICATE

 - MATCHING DEVICES
 REVERSE POLARITY
 MODIFICATION

EXAMPLE -1N345A (AN IMPROVED VERSION OF THE SEMICONDUCTOR DIODE TYPE 345)



Diotec 1N 4001 ... 1N 4007, 1N 4007-1300 EM 513, EM 516, EM 518 Silicon Rectifiers Silizium Gleichrichter Nominal current - Nennstrom 1 A → 1 × 0 2.6 a1 Repetitive peak reverse voltage Periodische Spitzensperrspannung 50...2000 V Plastic case Kunststoffgehäuse DO-204AL Weight approx. - Gewicht ca. 0.4 g Plastic material has UL classification 94V-0 Gehäusematerial UL94V-0 klassifiziert Standard packaging taped in ammo pack Standard Lieferform gegurtet in Ammo-Pack Maximum ratings Grenzwerte

Type Typ	Repetitive peak reverse voltage Periodische Spitzensperrspannung $V_{REM}[V]$			Surge peak reverse voltage Stoßspitzensperrspannung V _{RSM} [V]				
1N 4001	50							
1N 4002	100		100					
1N 4003	200		200					
1N 4004	400		400	i .				
1N 4005	600		600					
1N 4006	800		800	C				
1N 4007	1000		1000	6				
1N 4007-1300	1300	1300						
EM 513	1600	1600						
EM 516	1800	1800						
EM 518	2000	2000						
	rectified current, R-load nwegschaltung mit R-Last	$T_A = 75^{\circ}C$ $T_A = 100^{\circ}C$		1 A ¹ 0.75 A ¹				
Repetitive peak forwar Periodischer Spitzenstr		f > 15 Hz	\mathbf{I}_{FRM}	10 A 1)				
Peak forward surge cu Stoßstrom für eine 50 I	rent, 50 Hz half sine-wave Iz Sinus-Halbwelle	$T_A = 25^{\circ}C$	I_{FSM}	50 A				

Valid, if leads are kept at ambient temperature at a distance of 10 mm from case
 Gültig, wenn die Anschlußdrählte in 10 mm Abstand von Gelhäuse auf Umgebungstemperatur gehalten werden

datasheet.seekic.com

Maximum Ratings & Thermal Characteristics nutrigs at 26 °C articles temperature unless otherwise specifie

Parameter	Symb.	1N 4001	1N 4002	1N 4003	1N 4004	1N 4005	1N 4006	1N 4007	Unit
Maximum repetitive peak reverse voltage	VRRN	50	100	200	400	600	800	1000	٧
* Maximum RMS voltage	V _{RMS}	35	70	140	280	420	560	700	٧
Maximum DC blocking voltage		50	100	200	400	600	800	1000	V
* Maximum average toward rectified current 0.375* (9.5mm) lead length at T _A = 75° C	I _{F(AV)}	1.0							Α
 Peak forward surge current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) T_A = 75°C 	IFSM	30							Α
* Maximum full load reverse current, full cycle average 0.375* (9.5mm) lead length T _L = 75°C	In(AV)	30						μΑ	
Typical thermal resistance ⁽¹⁾	Reua Reua	50 25							*C/V
* Maximum DC blocking voltage temperature		+150							٧
* Operating junction and storage temperature range	TJ. TSTO	-50 to +175						°C	

 Maximum instantaneous lorward voltage at 1.0A
 Vr
 1.1

 **Maximum Do reverse current
 T_A − 25° C
 5.0

 ast asted OD blocking voltage
 T_A − 125° C
 1n
 50

 Typical junction capacitance at 4.0½, 1MHz
 C_J
 15

elenota.com