
A/D Converter and D/A Converter

- D/A Converters
- D/A converters convert digital signals into analog format.

Digital Data:

Evenly spaced discontinuous values
Temporally discrete, quantitatively discrete
Analog Data (Natural Phenomena):
Continuous range of values
Temporally continuous, quantitatively continuous

A/D Converter and D/A Converter

A/D Converters

- An A/D converter is a device that converts analog signals (usually voltage) obtained from environmental (physical) phenomena into digital format
- Conversion involves a series of steps, including sampling, quantization, and coding.

A/D Converter and D/A Converter

A/D Converter Applications

Digital Audio:

Digital audio workstations, sound recording, pulse-code modulation

Digital signal processing:

TV tuner cards, microcontrollers, digital storage oscilloscopes

Scientific instruments:

Digital imaging systems, radar systems, temperature sensors

D/A Converter Applications

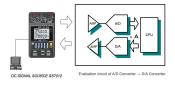
Digital Audio:

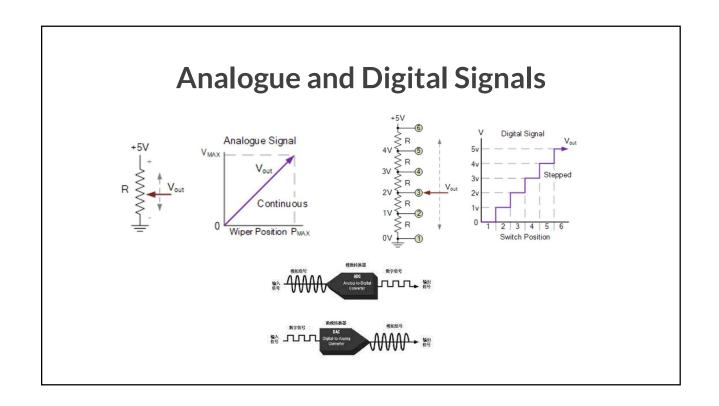
CD, MD, 1-bit Audio

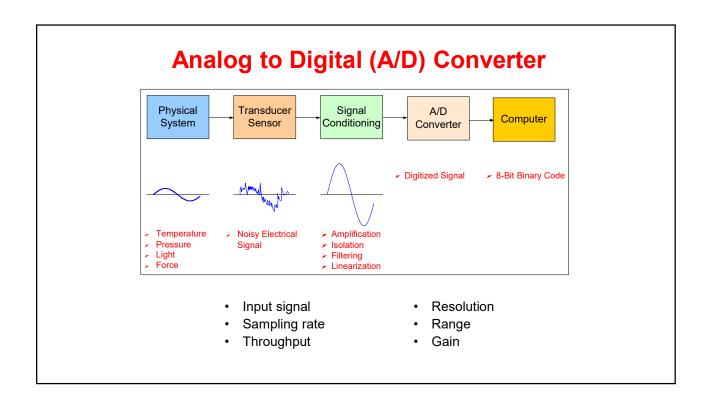
Digital Video:

DVD, Digital Still Camera

Communication Equipment:

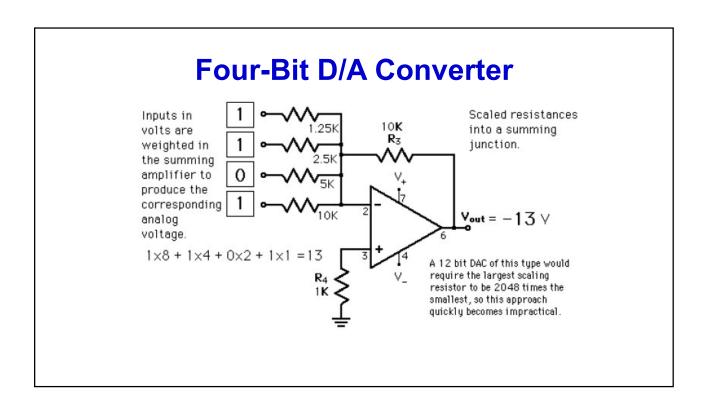

Smartphones, FAX, ADSI equipment


PCs:


Audio, video cards

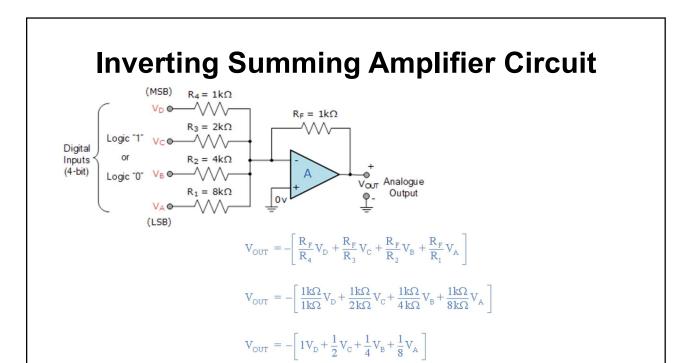
Measurement instruments:

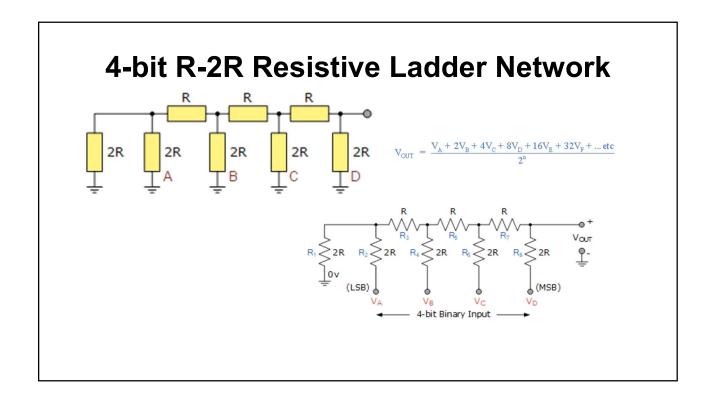
Programmable power supplies, etc.



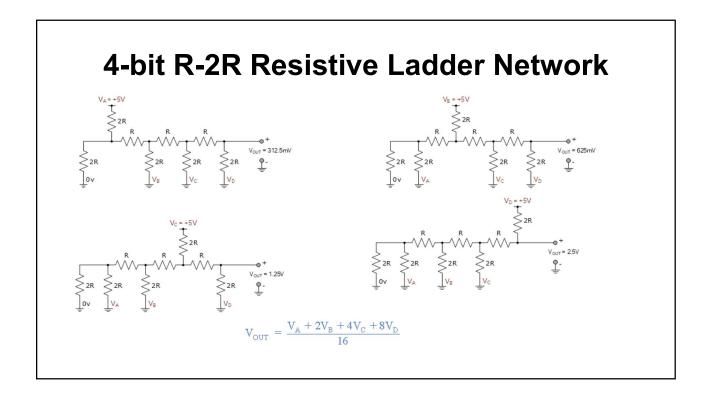
Digital-to-Analog Conversion

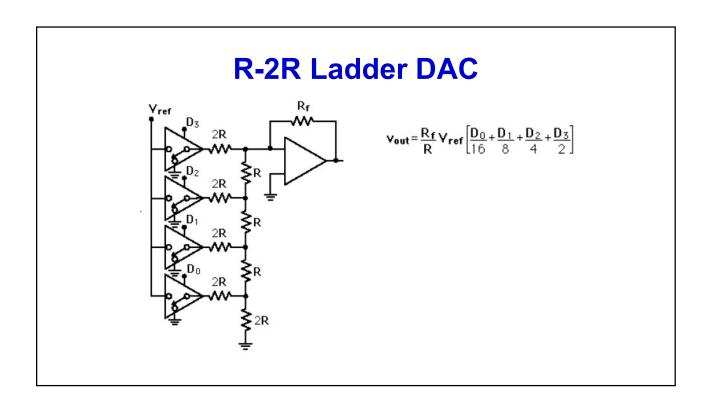
• When data is in binary form, the 0's and 1's may be of several forms such as the <u>TTL</u> form where the logic zero may be a value up to 0.8 volts and the 1 may be a voltage from 2 to 5 volts. The data can be converted to clean digital form using gates which are designed to be on or off depending on the value of the incoming signal. Data in clean binary digital form can be converted to an analog form by using a <u>summing amplifier</u>. For example, a simple <u>4-bit D/A converter</u> can be made with a four-input summing amplifier. More practical is the R-2R Network DAC.

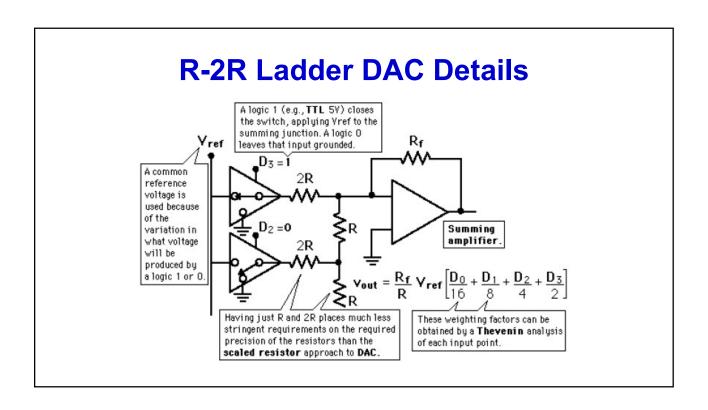


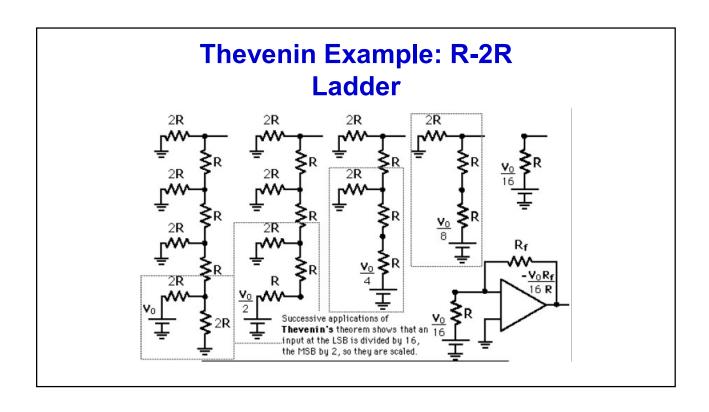

Inverting Summing Amplifier Circuit

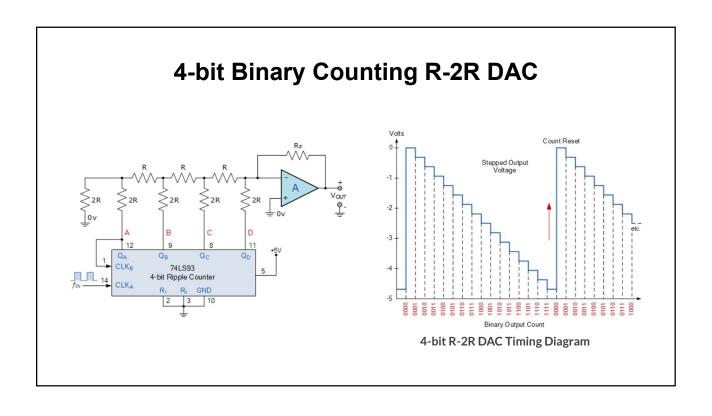
$$I_{F} = I_{1} + I_{2} + I_{3} + I_{4} = \frac{V_{INI}}{R_{1}} + \frac{V_{IN2}}{R_{2}} + \frac{V_{IN3}}{R_{3}} + \frac{V_{IN4}}{R_{4}}$$

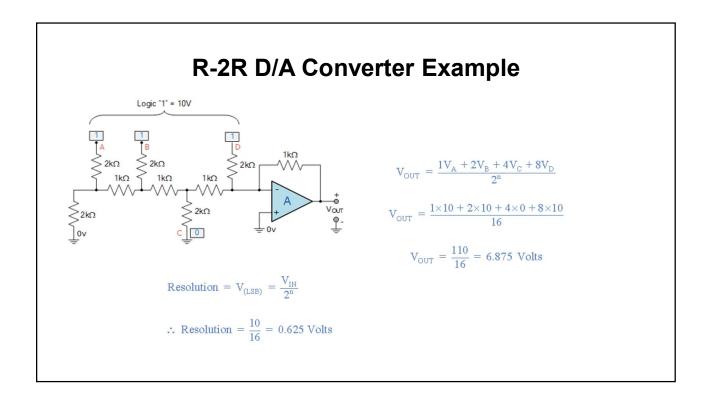

$$V_{OUT} = \frac{R_{F}}{R_{IN}} \times V_{IN} = -\left(\frac{R_{F}}{R_{1}}V_{IN1} + \frac{R_{F}}{R_{2}}V_{IN2} + \frac{R_{F}}{R_{3}}V_{IN3} + \frac{R_{F}}{R_{4}}V_{IN4}\right)$$

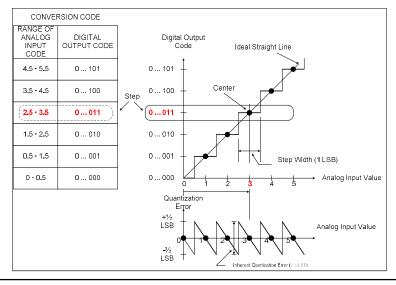

$$\therefore V_{OUT} = -\frac{R_{F}}{R_{IN}} \left(V_{IN1} + V_{IN2} + V_{IN3} + V_{IN4}\right)$$





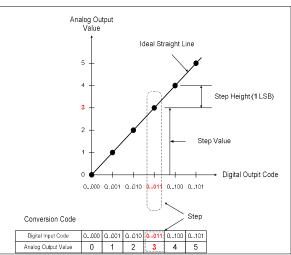

4-bit R-2R Resistive Ladder Network Series Parallel Circuit Parallel Circuit



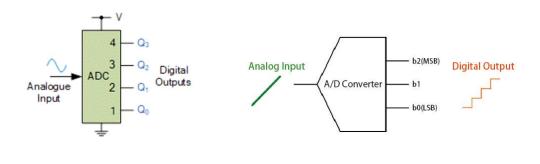

Unipolar Base 10	SCALE	+ 10V FS	BANARY	GRAY
Code	+FS - 1LSB = +15/16 FS	9.375		1000
+14	+7/8 FS	8.750	1110	1001
+13	+13/16 FS	8.125	1101	
+12	+3/4 FS	7.500	1100	
+11	+11/16 FS	6.875		
+10	+5/8 FS	6.250	1010	
+9	+9/16 FS	5.625	1001	1101
+8	+1/2 FS	5.000	1000	1100
+7	+7/16 FS	4.375		0100
+6	+3/8 FS	3.750	0 1 1 0	0101
+5	+5/16 FS	3.125	0101	
+4	+1/4 FS	2.500	0100	
+3	+3/16 FS	1.875	0 0 1 1	0010
+2	+1/8 FS	1.250	0010	0011
+1	1LSB = +1/16 FS	0.625	0 0 0 1	0001
0		0.000	0 0 0 0	0000

Dinalar	Base 10 number	SCALE	± 5V FS	OFFSET BANARY	TWOS COMP.	ONES COMP.	SIGN MAG.
Bipolar	+7	+FS - 1LSB = +7/8 FS	+4.375	1111	0111	0111	0111
Codes	+6	+3/4 FS	+3.750	1110	0110	0110	0110
	+5	+5/8 FS	+3.125	1101	0101	0101	0101
	+4	+1/2 FS	+2.500	1100	0100	0100	0100
	+3	+3/8 FS	+1.875	1011	0 0 1 1	0011	0011
	+2	+1/4 FS	+1.250	1010	0010	0010	0010
	+1	+1/8 FS	+0.625	1001	0 0 0 1	0001	0001
	0	0	0.000	1000	0000	*0000	*1000
	-1	-1/8 FS	-0.625	0111	1111	1110	1001
	-2	-1/4 FS	-1.250	0110	1110	1101	1010
	-3	-3/8 FS	-1.875	0101	1101	1100	1011
	-4	-1/2 FS	-2.500	0100	1100	1011	1100
	-5	-5/8 FS	-3.125	0 0 1 1	1011	1010	1101
	-6	-3/4 FS	-3.750	0 0 1 0	1010	1001	1110
	- 7	-FS + 1LSB = -7/8 FS	-4.375	0001	1001	1000	1111
	-8	_FS_	-5,000	0000	1000	l	
						ONES COMP.	TWOS COMP.
			NORMALLY USI		0+	0000	1000
		IIV	COMPOTATIONS	•	* 0-	1111	1000

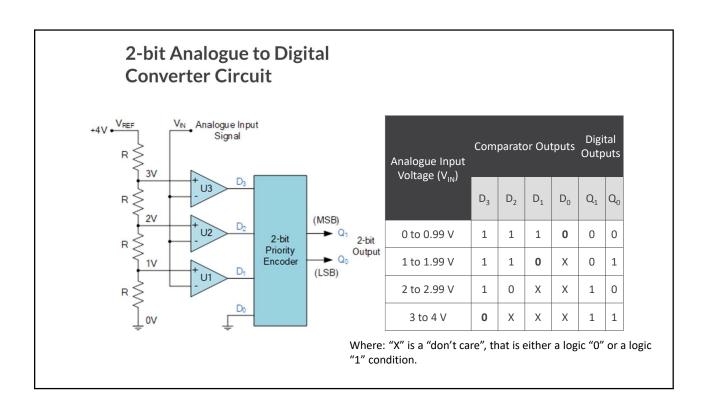
Qı	Quantization: The Size of a Least Significant Bit (LSB)						
Resolution N	2 ^N	VOLTAGE (10V FS)	ppm FS	% FS	dB FS		
2-bit	4	2.5V	250.000	25	-12		
4-bit	16	625mV	62.500	6.25	-24		
6-bit	64	156mV	15.625	1.56	-36		
8-bit	256	39.1mV	3.906	0.39	-48		
10-bit	1.024	9.77mV (10mV)	977	0.098	-60		
12-bit	4.096	2.44mV	244	0.024	-72		
14-bit	16.384	610μV	61	0.0061	-84		
16-bit	65.536	153μ V	15	0.0015	-96		
18-bit	262.144	38μV	4	0.0004	-108		
20-bit	1.048.576	9.54μV (10μV)	1	0.001	-120		
22-bit	4.194.304	2.38μ V	0.24	0.000024	-132		
24-bit	16.777.216	596nV*	0.06	0.000006	-144		
he resoluti	on of data co	nverters 1 LS	$B = \frac{FSR}{(2^n - I)} fo$	or n – bit converter			

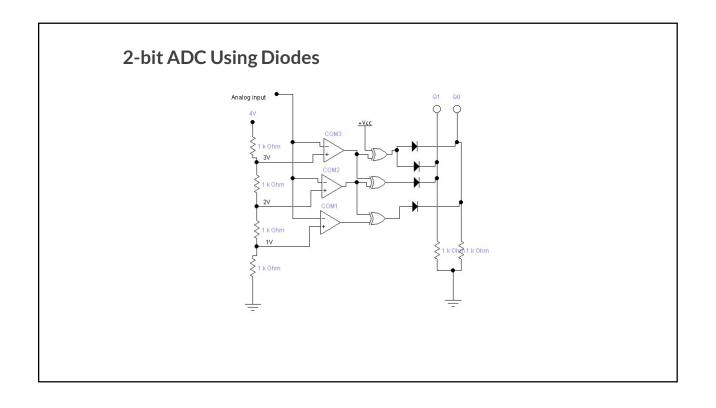

The Ideal Transfer Function (ADC)

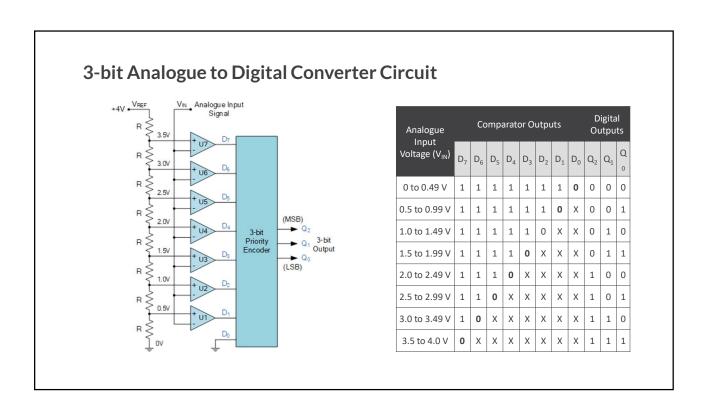
The theoretical ideal transfer function for an ADC is a straight line, however, the practical ideal transfer function is a uniform staircase characteristic shown in Figure .

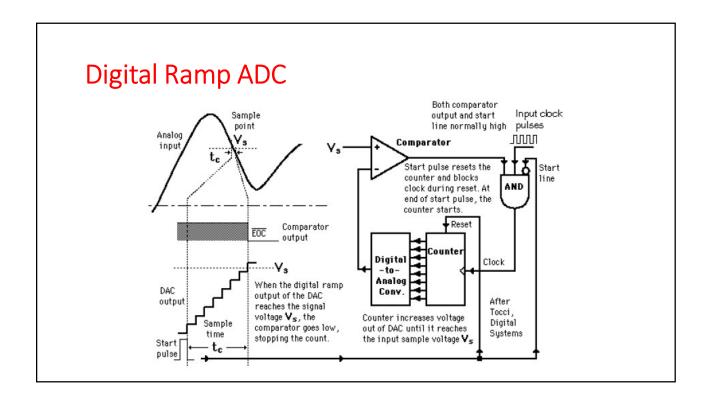

The Ideal Transfer Function (DAC)

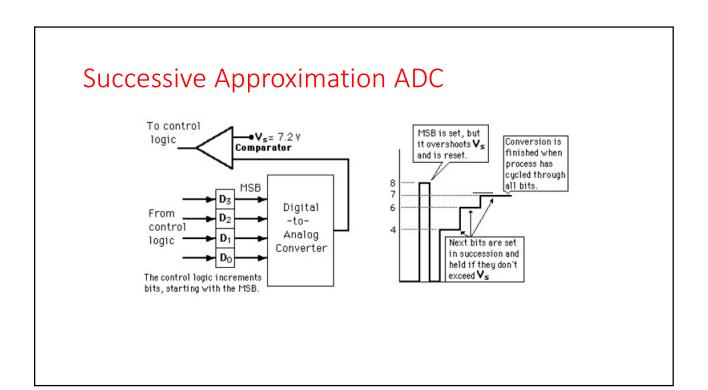
The DAC theoretical ideal transfer function would also be a straight line with an infinite number of steps but practically it is a series of points that fall on the ideal straight line as shown in Figure

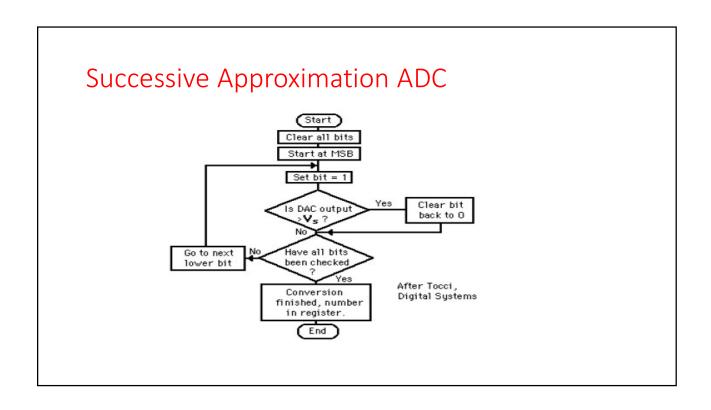


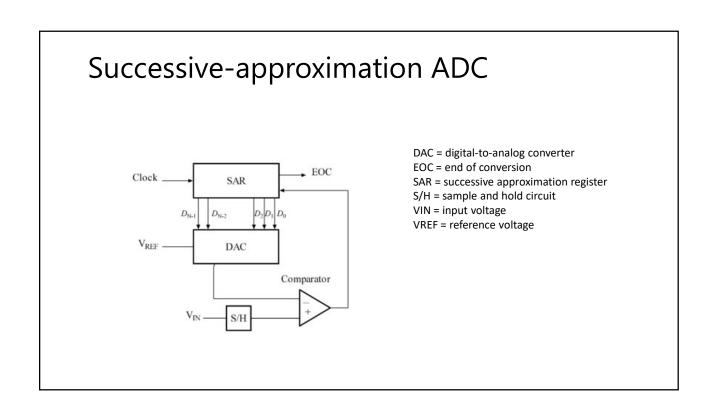

Analogue to Digital Converter

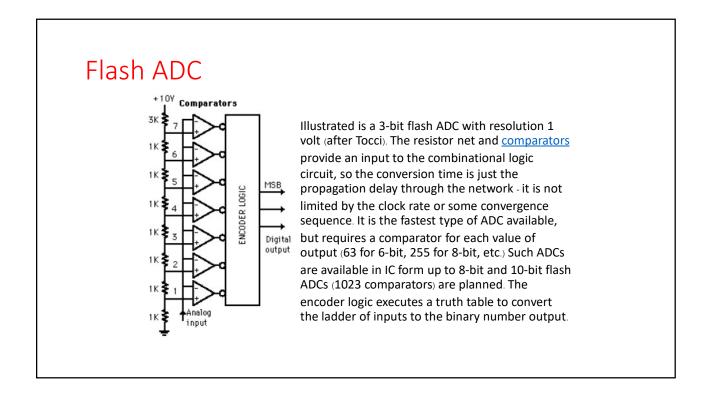

• Analogue to Digital Converter, or ADC, is a data converter which allows digital circuits to interface with the real world by encoding an analogue signal into a binary code










Successive Approximation ADC

 The successive approximation ADC is much faster than the digital ramp ADC because it uses digital logic to converge on the value closest to the input voltage. A <u>comparator</u> and a <u>DAC</u> are used in the process.

Successive-approximation – example of a 4-bit ADC Control Vin = 0V Resolution: SV × 1/2 25000V SV × 1/4 12500V SV × 1/4 0.3122V SV × 1/4 0.3122V

Carac	teristics	ADC			
	SYSTEM ARCHITECTURE	RESOLUTION	SPEED	ADVANTAGE / DRAWBACKS	
	Flash	8 bits	250MSPS-1GSPS	+ Extremly fast + High input bandwidth - Higher power consumption - Large die size - High input capacitance - Expansive - Sparkle codes	
	SAR	10 bits – 16 bits	76kSPS-250kSPS	+ High resolution and accuracy + Low power consumption + Fev external components - Low input bandwidth - Limited sampling rate - V _{In} must retain constant during conv.	
	Integrating	> 18 bits	< 50 kSPS	+ High resolution + Low supplay current + Excelant noise rejection - Low speed	
	Sigma-Delta (Σ–Δ)	> 16 bits	> 200 kSPS	+ High resolution + High input bandwidth + Digital on-chip filtering - External T/H - Limited sampling rate	
	Pipeline	12 bits – 16 bits	1MSPS-80MSPS	+ High throughtput rate + Low power consumption + Digital error correction and on- chip self-calibration - Required duty-cycle typical - Required minimum clock frequency	