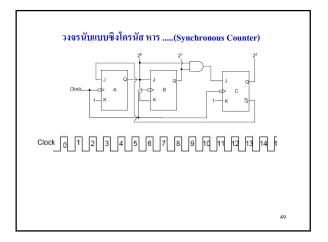
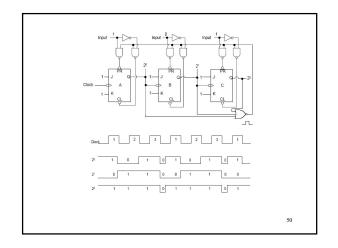

Synchronous Counter 1 3 5 7 1					
СР	Q ₂ Q	1 Q ₀	J ₀ K ₀	J ₁ K ₁	J ₂ K ₂
0	0 0	1_	→ d 0	1 d	0 d
1	0 1	1	-		
2	1 (1	→		
3	1 1	1	→		
4	0 0	1			





Example

• Determine $f_{\rm max}$ for the counter of Figure 7-17(a) if $t_{\rm pd}$ for each FF is 50ns and $t_{\rm pd}$ for each AND gate is 20 ns. Compare this value with $f_{\rm max}$ for a MOD-16

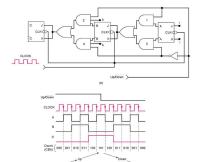
• What must be done to convert this counter to MOD-32?

- Determine \mathbf{f}_{max} for the MOD-32 parallel counter.

Advantage of Synchronous counters over Asychronous

- · States are changed simultaneously.
 - Total delav
 - FFt $_{pd}$ +ANDgate t_{pd}
- · Actual Ics
 - 74ALS160/162, 74HC160/162: Synchronous decade
 - 74ALS161/163, 74HC161/163: Synchronous MOD-16 counters

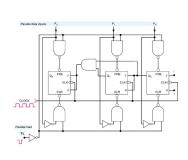
51


ripple counter.

- What is the advantage of a synchronous counter over an asynchronous counter? What is the disadvantage?
- How many logic devices are required for a $\mathtt{MOD-64}$ parallel counter?
- What logic signal drives the J,K inputs of the MSB flip-flop for the counter of question 2?

7-7 Synchronous Down and UP/Down counters

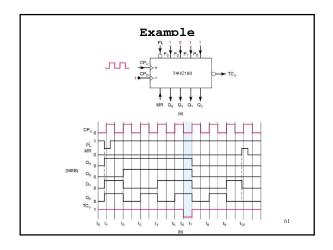
53

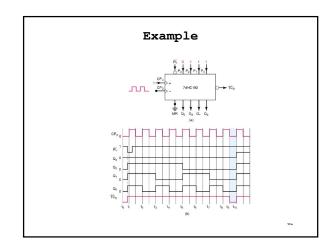

7-7 Synchronous Down and UP/Down counters

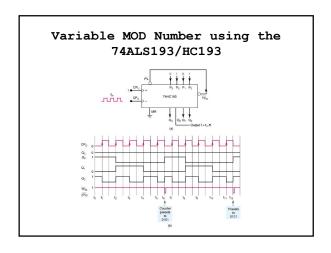
Example

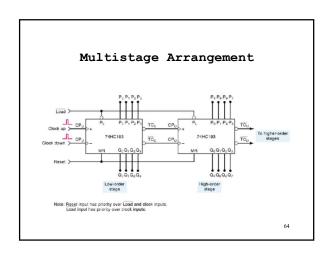
What problems might be caused if the UP/Down signal changes levels on the NGT of the clock?

Presettable counters



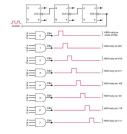

Synchronous Presetting


- Examples of IC counters
 74ALS160, 74ALS161, 74ALS612, 74ALS163
 74Hc160, 74HC161, 74HC162, 74HC163


- What is meant when we say that a counter is presentable?
- Describe the difference between asynchronous and synchronous presetting.

The 74ALS193/HC193 Count-up clock input (active rising edge) Count-down clock input (active rising edge) Asynchronous master reset input (active HIGH) PL Parallel data inputs P₀-P₃ Q_0 - Q_3 Flip-flop outputs Mode Select Terminal count-down (borrow) output (active LOW) $\overline{\text{TC}}_{\text{D}}$ TCU Terminal count-up (carry) output (active) LOW (b)

- Describe the function of the input PL and \mathbf{P}_0 to \mathbf{P}_3 .
- Describe the function of the MR input
- True or False: The 74HC193 cannot be preset while MR is active.
- What logic levels must be present at $\text{CP}_{\text{D}}, \ \text{PL}$ and MR in order for the 74ALS193 to count pulses that appear at $\text{CP}_{\text{D}}?$
- What would be the maximum counting range for a fourstage counter made up of 74HC193 Ics?

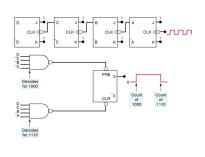

65

7-11 Decoding a counter

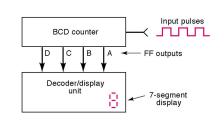
- · Mentally decoding the binary states of the LEDs
 - Becomes inconvenient as the size of the counter increases
- · Electronically decoding
 - To control the timing or sequencing of operations automatically without human intervention.
 - Active-High Decoding
 - Active-Low Decoding
 - BCD counter decoding

66

Active-High Decoding


67

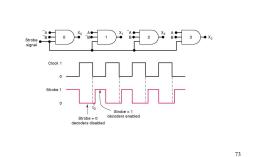
Example


 How many AND gates are required to decode completely all of the states of a MOD-32 binary counter? What are the inputs to the gate that decodes for the count of 21?

68

Active-LOW Decoding

BCD Counter Decoding

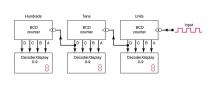


- How many gates are needed to decode a six-bit counter fully?
- Describe the decoding gate needed to produce a LOW output when a MOD-64 counter is at the counter of 23.

71

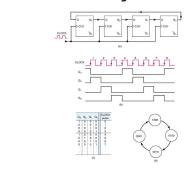
7-12 Decoding Glitches Total Decoding Glitches Total Decoding Glitches

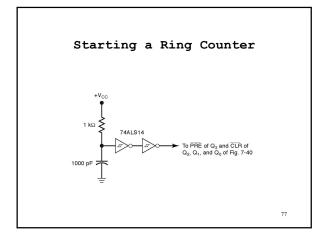
Strobing

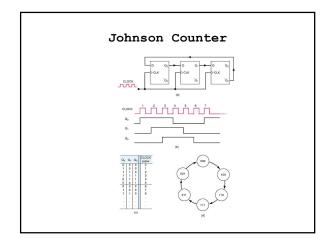


Review Questions

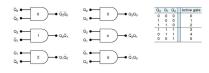
- Explain why the decoding gates for an asynchronous counter may have glitches on their outputs.
- How does strobing eliminate decoding glitches?


74


Cascading BCD counters



75


7-15 Shift-Register Counters

Decoding A Johnson Counter

Review Questions

- Which shift-register counter requires the most FFs for a
- given MOD number?
 Which shift-register counter requires the most decoding circuitry?
- How can a ring counter be converted to a Johnson counter?
- True or False:

 The outputs of a ring counter are always square waves.
 - The decoding circuitry for a Johnson counter is simpler than for a binary counter
 Ring and Johnson counters are synchronous counters.
- How many FFs are needed in a MOD-16 ring counter? How many are needed in a MOD-16 Johnson Counter?